Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.268
1.
Sci Rep ; 14(1): 10527, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719885

Plasmodium falciparum, the causative agent of malaria, poses a significant global health challenge, yet much of its biology remains elusive. A third of the genes in the P. falciparum genome lack annotations regarding their function, impeding our understanding of the parasite's biology. In this study, we employ structure predictions and the DALI search algorithm to analyse proteins encoded by uncharacterized genes in the reference strain 3D7 of P. falciparum. By comparing AlphaFold predictions to experimentally determined protein structures in the Protein Data Bank, we found similarities to known domains in 353 proteins of unknown function, shedding light on their potential functions. The lowest-scoring 5% of similarities were additionally validated using the size-independent TM-align algorithm, confirming the detected similarities in 88% of the cases. Notably, in over 70 P. falciparum proteins the presence of domains resembling heptatricopeptide repeats, which are typically involvement in RNA binding and processing, was detected. This suggests this family, which is important in transcription in mitochondria and apicoplasts, is much larger in Plasmodium parasites than previously thought. The results of this domain search provide a resource to the malaria research community that is expected to inform and enable experimental studies.


Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Algorithms , Protein Domains , Databases, Protein , Models, Molecular
2.
J Cell Biol ; 223(8)2024 Aug 05.
Article En | MEDLINE | ID: mdl-38743010

Basal bodies (BBs) are conserved eukaryotic structures that organize cilia. They are comprised of nine, cylindrically arranged, triplet microtubules (TMTs) connected to each other by inter-TMT linkages which stabilize the structure. Poc1 is a conserved protein important for BB structural integrity in the face of ciliary forces transmitted to BBs. To understand how Poc1 confers BB stability, we identified the precise position of Poc1 in the Tetrahymena BB and the effect of Poc1 loss on BB structure. Poc1 binds at the TMT inner junctions, stabilizing TMTs directly. From this location, Poc1 also stabilizes inter-TMT linkages throughout the BB, including the cartwheel pinhead and the inner scaffold. The full localization of the inner scaffold protein Fam161A requires Poc1. As ciliary forces are increased, Fam161A is reduced, indicative of a force-dependent molecular remodeling of the inner scaffold. Thus, while not essential for BB assembly, Poc1 promotes BB interconnections that establish an architecture competent to resist ciliary forces.


Basal Bodies , Cilia , Microtubules , Protozoan Proteins , Microtubules/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Cilia/metabolism , Basal Bodies/metabolism , Tetrahymena thermophila/metabolism , Tetrahymena thermophila/genetics , Tetrahymena/metabolism , Tetrahymena/genetics , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Protein Binding
3.
Nat Commun ; 15(1): 3792, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710711

Infection with the apicomplexan protozoan Toxoplasma gondii can be life-threatening in immunocompromised hosts. Transmission frequently occurs through the oral ingestion of T. gondii bradyzoite cysts, which transition to tachyzoites, disseminate, and then form cysts containing bradyzoites in the central nervous system, resulting in latent infection. Encapsulation of bradyzoites by a cyst wall is critical for immune evasion, survival, and transmission. O-glycosylation of the protein CST1 by the mucin-type O-glycosyltransferase T. gondii (Txg) GalNAc-T3 influences cyst wall rigidity and stability. Here, we report X-ray crystal structures of TxgGalNAc-T3, revealing multiple features that are strictly conserved among its apicomplexan homologues. This includes a unique 2nd metal that is coupled to substrate binding and enzymatic activity in vitro and cyst wall O-glycosylation in T. gondii. The study illustrates the divergence of pathogenic protozoan GalNAc-Ts from their host homologues and lays the groundwork for studying apicomplexan GalNAc-Ts as therapeutic targets in disease.


Protozoan Proteins , Toxoplasma , Toxoplasma/enzymology , Toxoplasma/genetics , Glycosylation , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Protozoan Proteins/chemistry , Humans , Crystallography, X-Ray , Glycosyltransferases/metabolism , Glycosyltransferases/genetics , Cell Wall/metabolism , Animals
4.
Sci Rep ; 14(1): 10039, 2024 05 02.
Article En | MEDLINE | ID: mdl-38693166

According to the World Health Organization, Chagas disease (CD) is the most prevalent poverty-promoting neglected tropical disease. Alarmingly, climate change is accelerating the geographical spreading of CD causative parasite, Trypanosoma cruzi, which additionally increases infection rates. Still, CD treatment remains challenging due to a lack of safe and efficient drugs. In this work, we analyze the viability of T. cruzi Akt-like kinase (TcAkt) as drug target against CD including primary structural and functional information about a parasitic Akt protein. Nuclear Magnetic Resonance derived information in combination with Molecular Dynamics simulations offer detailed insights into structural properties of the pleckstrin homology (PH) domain of TcAkt and its binding to phosphatidylinositol phosphate ligands (PIP). Experimental data combined with Alpha Fold proposes a model for the mechanism of action of TcAkt involving a PIP-induced disruption of the intramolecular interface between the kinase and the PH domain resulting in an open conformation enabling TcAkt kinase activity. Further docking experiments reveal that TcAkt is recognized by human inhibitors PIT-1 and capivasertib, and TcAkt inhibition by UBMC-4 and UBMC-6 is achieved via binding to TcAkt kinase domain. Our in-depth structural analysis of TcAkt reveals potential sites for drug development against CD, located at activity essential regions.


Chagas Disease , Molecular Docking Simulation , Molecular Dynamics Simulation , Trypanosoma cruzi , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/drug effects , Chagas Disease/drug therapy , Chagas Disease/parasitology , Humans , Proto-Oncogene Proteins c-akt/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding
5.
Nat Commun ; 15(1): 3747, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702310

In malaria parasites, the regulation of mRNA translation, storage and degradation during development and life-stage transitions remains largely unknown. Here, we functionally characterized the DEAD-box RNA helicase PfDOZI in P. falciparum. Disruption of pfdozi enhanced asexual proliferation but reduced sexual commitment and impaired gametocyte development. By quantitative transcriptomics, we show that PfDOZI is involved in the regulation of invasion-related genes and sexual stage-specific genes during different developmental stages. PfDOZI predominantly participates in processing body-like mRNPs in schizonts but germ cell granule-like mRNPs in gametocytes to impose opposing actions of degradation and protection on different mRNA targets. We further show the formation of stress granule-like mRNPs during nutritional deprivation, highlighting an essential role of PfDOZI-associated mRNPs in stress response. We demonstrate that PfDOZI participates in distinct mRNPs to maintain mRNA homeostasis in response to life-stage transition and environmental changes by differentially executing post-transcriptional regulation on the target mRNAs.


DEAD-box RNA Helicases , Plasmodium falciparum , Protozoan Proteins , RNA, Messenger , DEAD-box RNA Helicases/metabolism , DEAD-box RNA Helicases/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/growth & development , RNA, Messenger/metabolism , RNA, Messenger/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Ribonucleoproteins/metabolism , Ribonucleoproteins/genetics , Life Cycle Stages/genetics , RNA, Protozoan/metabolism , RNA, Protozoan/genetics , RNA Stability , Humans , Malaria, Falciparum/parasitology
6.
Nat Commun ; 15(1): 3985, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734677

Pentamidine and melarsoprol are primary drugs used to treat the lethal human sleeping sickness caused by the parasite Trypanosoma brucei. Cross-resistance to these two drugs has recently been linked to aquaglyceroporin 2 of the trypanosome (TbAQP2). TbAQP2 is the first member of the aquaporin family described as capable of drug transport; however, the underlying mechanism remains unclear. Here, we present cryo-electron microscopy structures of TbAQP2 bound to pentamidine or melarsoprol. Our structural studies, together with the molecular dynamic simulations, reveal the mechanisms shaping substrate specificity and drug permeation. Multiple amino acids in TbAQP2, near the extracellular entrance and inside the pore, create an expanded conducting tunnel, sterically and energetically allowing the permeation of pentamidine and melarsoprol. Our study elucidates the mechanism of drug transport by TbAQP2, providing valuable insights to inform the design of drugs against trypanosomiasis.


Aquaglyceroporins , Cryoelectron Microscopy , Melarsoprol , Molecular Dynamics Simulation , Pentamidine , Trypanosoma brucei brucei , Trypanosoma brucei brucei/metabolism , Aquaglyceroporins/metabolism , Aquaglyceroporins/chemistry , Melarsoprol/metabolism , Melarsoprol/chemistry , Pentamidine/chemistry , Pentamidine/metabolism , Biological Transport , Trypanocidal Agents/chemistry , Trypanocidal Agents/metabolism , Trypanocidal Agents/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Humans
7.
Nat Commun ; 15(1): 3984, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734736

Greenbeard genetic elements encode rare perceptible signals, signal recognition ability, and altruism towards others that display the same signal. Putative greenbeards have been described in various organisms but direct evidence for all the properties in one system is scarce. The tgrB1-tgrC1 allorecognition system of Dictyostelium discoideum encodes two polymorphic membrane proteins which protect cells from chimerism-associated perils. During development, TgrC1 functions as a ligand-signal and TgrB1 as its receptor, but evidence for altruism has been indirect. Here, we show that mixing wild-type and activated tgrB1 cells increases wild-type spore production and relegates the mutants to the altruistic stalk, whereas mixing wild-type and tgrB1-null cells increases mutant spore production and wild-type stalk production. The tgrB1-null cells cheat only on partners that carry the same tgrC1-allotype. Therefore, TgrB1 activation confers altruism whereas TgrB1 inactivation causes allotype-specific cheating, supporting the greenbeard concept and providing insight into the relationship between allorecognition, altruism, and exploitation.


Dictyostelium , Protozoan Proteins , Dictyostelium/genetics , Dictyostelium/metabolism , Dictyostelium/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Spores, Protozoan/genetics , Spores, Protozoan/metabolism , Signal Transduction , Mutation , Altruism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Chemotaxis/genetics
8.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Article En | MEDLINE | ID: mdl-38739798

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Peptides , Plasmodium falciparum , Protozoan Proteins , Ubiquitin Thiolesterase , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Plasmodium falciparum/drug effects , Ubiquitin Thiolesterase/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Humans , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , Protozoan Proteins/antagonists & inhibitors , Antimalarials/pharmacology , Antimalarials/chemistry , Ubiquitin/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/drug therapy
9.
Biochem Biophys Res Commun ; 715: 149975, 2024 Jun 30.
Article En | MEDLINE | ID: mdl-38676997

Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.


Adenosine Triphosphate , Adenylosuccinate Synthase , Guanosine Triphosphate , Leishmania donovani , Leishmania donovani/enzymology , Leishmania donovani/metabolism , Leishmania donovani/genetics , Adenosine Triphosphate/metabolism , Guanosine Triphosphate/metabolism , Adenylosuccinate Synthase/metabolism , Adenylosuccinate Synthase/chemistry , Substrate Specificity , Molecular Dynamics Simulation , Amino Acid Sequence , Binding Sites , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Protozoan Proteins/genetics , GTP Phosphohydrolases/metabolism , GTP Phosphohydrolases/chemistry
10.
mBio ; 15(5): e0285023, 2024 May 08.
Article En | MEDLINE | ID: mdl-38564676

Condensin I is a pentameric complex that regulates the mitotic chromosome assembly in eukaryotes. The kleisin subunit CAP-H of the condensin I complex acts as a linchpin to maintain the structural integrity and loading of this complex on mitotic chromosomes. This complex is present in all eukaryotes and has recently been identified in Plasmodium spp. However, how this complex is assembled and whether the kleisin subunit is critical for this complex in these parasites are yet to be explored. To examine the role of PfCAP-H during cell division within erythrocytes, we generated an inducible PfCAP-H knockout parasite. We find that PfCAP-H is dynamically expressed during mitosis with the peak expression at the metaphase plate. PfCAP-H interacts with PfCAP-G and is a non-SMC member of the condensin I complex. Notably, the absence of PfCAP-H does not alter the expression of PfCAP-G but affects its localization at the mitotic chromosomes. While mitotic spindle assembly is intact in PfCAP-H-deficient parasites, duplicated centrosomes remain clustered over the mass of unsegmented nuclei with failed karyokinesis. This failure leads to the formation of an abnormal nuclear mass, while cytokinesis occurs normally. Altogether, our data suggest that PfCAP-H plays a crucial role in maintaining the structural integrity of the condensin I complex on the mitotic chromosomes and is essential for the asexual development of malarial parasites. IMPORTANCE: Mitosis is a fundamental process for Plasmodium parasites, which plays a vital role in their survival within two distinct hosts-human and Anopheles mosquitoes. Despite its great significance, our comprehension of mitosis and its regulation remains limited. In eukaryotes, mitosis is regulated by one of the pivotal complexes known as condensin complexes. The condensin complexes are responsible for chromosome condensation, ensuring the faithful distribution of genetic material to daughter cells. While condensin complexes have recently been identified in Plasmodium spp., our understanding of how this complex is assembled and its precise functions during the blood stage development of Plasmodium falciparum remains largely unexplored. In this study, we investigate the role of a central protein, PfCAP-H, during the blood stage development of P. falciparum. Our findings reveal that PfCAP-H is essential and plays a pivotal role in upholding the structure of condensin I and facilitating karyokinesis.


Adenosine Triphosphatases , DNA-Binding Proteins , Mitosis , Multiprotein Complexes , Plasmodium falciparum , Protozoan Proteins , Multiprotein Complexes/metabolism , Multiprotein Complexes/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Plasmodium falciparum/growth & development , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Erythrocytes/parasitology , Gene Knockout Techniques , Humans
11.
Cell Rep ; 43(4): 114012, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38573856

Plasmodium falciparum is a human-adapted apicomplexan parasite that causes the most dangerous form of malaria. P. falciparum cysteine-rich protective antigen (PfCyRPA) is an invasion complex protein essential for erythrocyte invasion. The precise role of PfCyRPA in this process has not been resolved. Here, we show that PfCyRPA is a lectin targeting glycans terminating with α2-6-linked N-acetylneuraminic acid (Neu5Ac). PfCyRPA has a >50-fold binding preference for human, α2-6-linked Neu5Ac over non-human, α2-6-linked N-glycolylneuraminic acid. PfCyRPA lectin sites were predicted by molecular modeling and validated by mutagenesis studies. Transgenic parasite lines expressing endogenous PfCyRPA with single amino acid exchange mutants indicated that the lectin activity of PfCyRPA has an important role in parasite invasion. Blocking PfCyRPA lectin activity with small molecules or with lectin-site-specific monoclonal antibodies can inhibit blood-stage parasite multiplication. Therefore, targeting PfCyRPA lectin activity with drugs, immunotherapy, or a vaccine-primed immune response is a promising strategy to prevent and treat malaria.


Erythrocytes , Plasmodium falciparum , Polysaccharides , Protozoan Proteins , Humans , Antigens, Protozoan/metabolism , Antigens, Protozoan/immunology , Antigens, Protozoan/genetics , Erythrocytes/parasitology , Erythrocytes/metabolism , Lectins/metabolism , Lectins/genetics , Malaria, Falciparum/parasitology , Plasmodium falciparum/metabolism , Polysaccharides/metabolism , Protein Binding , Protozoan Proteins/metabolism , Protozoan Proteins/genetics
12.
J Proteomics ; 300: 105178, 2024 May 30.
Article En | MEDLINE | ID: mdl-38636824

Employing microbial systems for the bioremediation of contaminated waters represent a potential option, however, limited understanding of the underlying mechanisms hampers the implication of microbial-mediated bioremediation. The omics tools offer a promising approach to explore the molecular basis of the bioremediation process. Here, a mass spectrometry-based quantitative proteome profiling approach was conducted to explore the differential protein levels in cadmium-treated Paramecium multimicronucleatum. The Proteome Discoverer software was used to identify and quantify differentially abundant proteins. The proteome profiling generated 7,416 peptide spectral matches, yielding 2824 total peptides, corresponding to 989 proteins. The analysis revealed that 29 proteins exhibited significant (p ≤ 0.05) differential levels, including a higher abundance of 6 proteins and reduced levels of 23 proteins in Cd2+ treated samples. These differentially abundant proteins were associated with stress response, energy metabolism, protein degradation, cell growth, and hormone processing. Briefly, a comprehensive proteome profile in response to cadmium stress of a newly isolated Paramecium has been established that will be useful in future studies identifying critical proteins involved in the bioremediation of metals in ciliates. SIGNIFICANCE: Ciliates are considered a good biological indicator of chemical pollution and relatively sensitive to heavy metal contamination. A prominent ciliate, Paramecium is a promising candidate for the bioremediation of polluted water. The proteins related to metal resistance in Paramecium species are still largely unknown and need further exploration. In order to identify and reveal the proteins related to metal resistance in Paramecia, we have reported differential protein abundance in Paramecium multimicronucleatum in response to cadmium stress. The proteins found in our study play essential roles during stress response, hormone processing, protein degradation, energy metabolism, and cell growth. It seems likely that Paramecia are not a simple sponge for metals but they could also transform them into less toxic derivatives or by detoxification by protein binding. This data will be helpful in future studies to identify critical proteins along with their detailed mechanisms involved in the bioremediation and detoxification of metal ions in Paramecium species.


Cadmium , Paramecium , Proteome , Protozoan Proteins , Cadmium/toxicity , Cadmium/pharmacology , Proteome/metabolism , Proteome/drug effects , Paramecium/metabolism , Paramecium/drug effects , Protozoan Proteins/metabolism , Stress, Physiological/drug effects , Biodegradation, Environmental , Proteomics/methods
13.
Front Cell Infect Microbiol ; 14: 1381155, 2024.
Article En | MEDLINE | ID: mdl-38650737

Kinetoplastid pathogens including Trypanosoma brucei, T. cruzi, and Leishmania species, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach in T. brucei that facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing in T. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic form T. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages.


Protozoan Proteins , RNA Editing , Ribonuclease III , Trypanosoma brucei brucei , Amino Acid Substitution , DNA Mutational Analysis , High-Throughput Nucleotide Sequencing , Mutation , Protein Domains/genetics , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism , Trypanosoma brucei brucei/growth & development
14.
Mol Microbiol ; 121(5): 1063-1078, 2024 May.
Article En | MEDLINE | ID: mdl-38558112

Metalloprotease-gp63 is a virulence factor secreted by Leishmania. However, secretory pathway in Leishmania is not well defined. Here, we cloned and expressed the GRASP homolog from Leishmania. We found that Leishmania expresses one GRASP homolog of 58 kDa protein (LdGRASP) which localizes in LdRab1- and LPG2-positive Golgi compartment in Leishmania. LdGRASP was found to bind with COPII complex, LdARF1, LdRab1 and LdRab11 indicating its role in ER and Golgi transport in Leishmania. To determine the function of LdGRASP, we generated LdGRASP knockout parasites using CRISPR-Cas9. We found fragmentation of Golgi in Ld:GRASPKO parasites. Our results showed enhanced transport of non-GPI-anchored gp63 to the cell surface leading to higher secretion of this form of gp63 in Ld:GRASPKO parasites in comparison to Ld:WT cells. In contrast, we found that transport of GPI-anchored gp63 to the cell surface is blocked in Ld:GRASPKO parasites and thereby inhibits its secretion. The overexpression of dominant-negative mutant of LdRab1 or LdSar1 in Ld:GRASPKO parasites significantly blocked the secretion of non-GPI-anchored gp63. Interestingly, we found that survival of transgenic parasites overexpressing Ld:GRASP-GFP is significantly compromised in macrophages in comparison to Ld:WT and Ld:GRASPKO parasites. These results demonstrated that LdGRASP differentially regulates Ldgp63 secretory pathway in Leishmania.


Metalloendopeptidases , Protozoan Proteins , Virulence Factors , Virulence Factors/metabolism , Virulence Factors/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Metalloendopeptidases/metabolism , Metalloendopeptidases/genetics , Golgi Apparatus/metabolism , Endoplasmic Reticulum/metabolism , Macrophages/parasitology , Macrophages/metabolism , Animals , Leishmania/metabolism , Leishmania/genetics , Protein Transport , CRISPR-Cas Systems , Golgi Matrix Proteins/metabolism , Golgi Matrix Proteins/genetics
15.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article En | MEDLINE | ID: mdl-38673995

In recent decades, neglected tropical diseases and poverty-related diseases have become a serious health problem worldwide. Among these pathologies, human African trypanosomiasis, and malaria present therapeutic problems due to the onset of resistance, toxicity problems and the limited spectrum of action. In this drug discovery process, rhodesain and falcipain-2, of Trypanosoma brucei rhodesiense and Plasmodium falciparum, are currently considered the most promising targets for the development of novel antitrypanosomal and antiplasmodial agents, respectively. Therefore, in our study we identified a novel lead-like compound, i.e., inhibitor 2b, which we proved to be active against both targets, with a Ki = 5.06 µM towards rhodesain and an IC50 = 40.43 µM against falcipain-2.


Cysteine Proteinase Inhibitors , Nitriles , Plasmodium falciparum , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Humans , Antimalarials/therapeutic use , Antimalarials/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Cysteine Proteinase Inhibitors/chemistry , Malaria/drug therapy , Nitriles/therapeutic use , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy
16.
Int J Mol Sci ; 25(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38673804

Throughout its lifecycle, Entamoeba histolytica encounters a variety of stressful conditions. This parasite possesses Heat Shock Response Elements (HSEs) which are crucial for regulating the expression of various genes, aiding in its adaptation and survival. These HSEs are regulated by Heat Shock Transcription Factors (EhHSTFs). Our research has identified seven such factors in the parasite, designated as EhHSTF1 through to EhHSTF7. Significantly, under heat shock conditions and in the presence of the antiamoebic compound emetine, EhHSTF5, EhHSTF6, and EhHSTF7 show overexpression, highlighting their essential role in gene response to these stressors. Currently, only EhHSTF7 has been confirmed to recognize the HSE as a promoter of the EhPgp5 gene (HSE_EhPgp5), leaving the binding potential of the other EhHSTFs to HSEs yet to be explored. Consequently, our study aimed to examine, both in vitro and in silico, the oligomerization, and binding capabilities of the recombinant EhHSTF5 protein (rEhHSTF5) to HSE_EhPgp5. The in vitro results indicate that the oligomerization of rEhHSTF5 is concentration-dependent, with its dimeric conformation showing a higher affinity for HSE_EhPgp5 than its monomeric state. In silico analysis suggests that the alpha 3 α-helix (α3-helix) of the DNA-binding domain (DBD5) of EhHSTF5 is crucial in binding to the major groove of HSE, primarily through hydrogen bonding and salt-bridge interactions. In summary, our results highlight the importance of oligomerization in enhancing the affinity of rEhHSTF5 for HSE_EhPgp5 and demonstrate its ability to specifically recognize structural motifs within HSE_EhPgp5. These insights significantly contribute to our understanding of one of the potential molecular mechanisms employed by this parasite to efficiently respond to various stressors, thereby enabling successful adaptation and survival within its host environment.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Entamoeba histolytica , Promoter Regions, Genetic , Protozoan Proteins , Binding Sites , Computer Simulation , Entamoeba histolytica/genetics , Entamoeba histolytica/metabolism , Heat-Shock Response/genetics , Protein Binding , Protein Multimerization , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/chemistry , Response Elements , Transcription Factors/metabolism , Transcription Factors/genetics , Transcription Factors/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
17.
Front Cell Infect Microbiol ; 14: 1367359, 2024.
Article En | MEDLINE | ID: mdl-38660488

Cryptosporidium parvum is a common cause of a zoonotic disease and a main cause of diarrhea in newborns. Effective drugs or vaccines are still lacking. Oocyst is the infective form of the parasite; after its ingestion, the oocyst excysts and releases four sporozoites into the host intestine that rapidly attack the enterocytes. The membrane protein CpRom1 is a large rhomboid protease that is expressed by sporozoites and recognized as antigen by the host immune system. In this study, we observed the release of CpRom1 with extracellular vesicles (EVs) that was not previously described. To investigate this phenomenon, we isolated and resolved EVs from the excystation medium by differential ultracentrifugation. Fluorescence flow cytometry and transmission electron microscopy (TEM) experiments identified two types of sporozoite-derived vesicles: large extracellular vesicles (LEVs) and small extracellular vesicles (SEVs). Nanoparticle tracking analysis (NTA) revealed mode diameter of 181 nm for LEVs and 105 nm for SEVs, respectively. Immunodetection experiments proved the presence of CpRom1 and the Golgi protein CpGRASP in LEVs, while immune-electron microscopy trials demonstrated the localization of CpRom1 on the LEVs surface. TEM and scanning electron microscopy (SEM) showed that LEVs were generated by means of the budding of the outer membrane of sporozoites; conversely, the origin of SEVs remained uncertain. Distinct protein compositions were observed between LEVs and SEVs as evidenced by their corresponding electrophoretic profiles. Indeed, a dedicated proteomic analysis identified 5 and 16 proteins unique for LEVs and SEVs, respectively. Overall, 60 proteins were identified in the proteome of both types of vesicles and most of these proteins (48 in number) were already identified in the molecular cargo of extracellular vesicles from other organisms. Noteworthy, we identified 12 proteins unique to Cryptosporidium spp. and this last group included the immunodominant parasite antigen glycoprotein GP60, which is one of the most abundant proteins in both LEVs and SEVs.


Cryptosporidium parvum , Extracellular Vesicles , Protozoan Proteins , Sporozoites , Extracellular Vesicles/metabolism , Cryptosporidium parvum/metabolism , Sporozoites/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/analysis , Microscopy, Electron, Transmission , Animals , Cryptosporidiosis/parasitology , Humans , Proteome/analysis , Proteomics , Flow Cytometry
18.
Mol Biol Rep ; 51(1): 578, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38668789

Mg2+-independent phosphatidic acid phosphatase (PAP2), diacylglycerol pyrophosphate phosphatase 1 (Dpp1) is a membrane-associated enzyme in Saccharomyces cerevisiae. The enzyme is responsible for inducing the breakdown of ß-phosphate from diacylglycerol pyrophosphate (DGPP) into phosphatidate (PA) and then removes the phosphate from PA to give diacylglycerol (DAG). In this study through RNAi suppression, we have demonstrated that Trypanosoma brucei diacylglycerol pyrophosphate phosphatase 1 (TbDpp1) procyclic form production is not required for parasite survival in culture. The steady-state levels of triacylglycerol (TAG), the number of lipid droplets, and the PA content are all maintained constant through the inducible down-regulation of TbDpp1. Furthermore, the localization of C-terminally tagged variants of TbDpp1 in the lysosome was demonstrated by immunofluorescence microscopy.


Glycerol/analogs & derivatives , Lysosomes , Trypanosoma brucei brucei , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Lysosomes/metabolism , Lysosomes/enzymology , Triglycerides/metabolism , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/genetics , RNA Interference , Diphosphates/metabolism , Phosphoric Monoester Hydrolases/metabolism , Phosphoric Monoester Hydrolases/genetics , Diglycerides/metabolism , Phosphatidic Acids/metabolism
19.
mSphere ; 9(4): e0014024, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38564734

Histone lysine acetyltransferase MYST-associated NuA4 complex is conserved from yeast to humans and plays key roles in cell cycle regulation, gene transcription, and DNA replication/repair. Here, we identified a Plasmodium falciparum MYST-associated complex, PfNuA4, which contains 11 of the 13 conserved NuA4 subunits. Reciprocal pulldowns using PfEAF2, a shared component between the NuA4 and SWR1 complexes, not only confirmed the PfNuA4 complex but also identified the PfSWR1 complex, a histone remodeling complex, although their identities are low compared to the homologs in yeast or humans. Notably, both H2A.Z/H2B.Z were associated with the PfSWR1 complex, indicating that this complex is involved in the deposition of H2A.Z/H2B.Z, the variant histone pair that is enriched in the activated promoters. Overexpression of PfMYST resulted in earlier expression of genes involved in cell cycle regulation, DNA replication, and merozoite invasion, and upregulation of the genes related to antigenic variation and DNA repair. Consistently, PfMYST overexpression led to high basal phosphorylated PfH2A (γ-PfH2A), the mark of DNA double-strand breaks, and conferred protection against genotoxic agent methyl methanesulfonate (MMS), X-rays, and artemisinin, the first-line antimalarial drug. In contrast, the knockdown of PfMYST caused a delayed parasite recovery upon MMS treatment. MMS induced the gradual disappearance of PfMYST in the cytoplasm and concomitant accumulation of PfMYST in the nucleus, suggesting cytoplasm-nucleus shuttling of PfMYST. Meanwhile, PfMYST colocalized with the γ-PfH2A, indicating PfMYST was recruited to the DNA damage sites. Collectively, PfMYST plays critical roles in cell cycle regulation, gene transcription, and DNA replication/DNA repair in this low-branching parasitic protist.IMPORTANCEUnderstanding gene regulation and DNA repair in malaria parasites is critical for identifying targets for antimalarials. This study found PfNuA4, a PfMYST-associated, histone modifier complex, and PfSWR1, a chromatin remodeling complex in malaria parasite Plasmodium falciparum. These complexes are divergent due to the low identities compared to their homologs from yeast and humans. Furthermore, overexpression of PfMYST resulted in substantial transcriptomic changes, indicating that PfMYST is involved in regulating the cell cycle, antigenic variation, and DNA replication/repair. Consistently, PfMYST was found to protect against DNA damage caused by the genotoxic agent methyl methanesulfonate, X-rays, and artemisinin, the first-line antimalarial drug. Additionally, DNA damage led to the relocation of cytoplasmic PfMYST to the nucleus and colocalization of PfMYST with γ-PfH2A, the mark of DNA damage. In summary, this study demonstrated that the PfMYST complex has critical functions in regulating cell cycle, antigenic variation, and DNA replication/DNA repair in P. falciparum.


DNA Repair , Plasmodium falciparum , Protozoan Proteins , Plasmodium falciparum/genetics , Plasmodium falciparum/drug effects , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism , Humans , DNA Replication , Histones/genetics , Histones/metabolism , Gene Expression Regulation
20.
PLoS One ; 19(4): e0298521, 2024.
Article En | MEDLINE | ID: mdl-38662801

In Trypanosoma brucei, gene expression is primarily regulated posttranscriptionally making RNA metabolism critical. T. brucei has an epitranscriptome containing modified RNA bases. Yet, the identity of the enzymes catalyzing modified RNA base addition and the functions of the enzymes and modifications remain unclear. Homology searches indicate the presence of numerous T. brucei cytosine RNA methyltransferase homologs. One such homolog, TbNop2 was studied in detail. TbNop2 contains the six highly conserved motifs found in cytosine RNA methyltransferases and is evolutionarily related to the Nop2 protein family required for rRNA modification and processing. RNAi experiments targeting TbNop2 resulted in reduced levels of TbNop2 RNA and protein, and a cessation of parasite growth. Next generation sequencing of bisulfite-treated RNA (BS-seq) detected the presence of two methylation sites in the large rRNA; yet TbNop2 RNAi did not result in a significant reduction of methylation. However, TbNop2 RNAi resulted in the retention of 28S internal transcribed spacer RNAs, indicating a role for TbNop2 in rRNA processing.


RNA Processing, Post-Transcriptional , RNA, Ribosomal , Trypanosoma brucei brucei , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/metabolism , RNA, Ribosomal/metabolism , RNA, Ribosomal/genetics , Methyltransferases/metabolism , Methyltransferases/genetics , Protozoan Proteins/metabolism , Protozoan Proteins/genetics , RNA, Protozoan/metabolism , RNA, Protozoan/genetics , RNA Interference , Methylation
...